
REPORT DOCUMENTATION PAGE
Form Approved

OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188.) Washington, DC 20503.
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Technical Report

4. TITLE AND SUBTITLE

Automation Comparison Procedure for Verification
of Hybrid Sjetems

5. FUNDING NUMBERS

DAAHQ4-96-1-0341

6. AUTHOR(S)

W. Kohn, J.B. Remmel and A. Nerode

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Regents of the University of California
c/o Sponsored Projects Office
336 Sproul Hall
Berkeley, CA 94720-5940

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

A^o 3$X73.11'nfrf*^
11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the authors) and should not be construed as an official
Department of the Army position, policy or decision, unless so designated by the documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper describes on-going research on a procedure for the verification of hybrid system
controllers implemented via KyBrithms' Multiple Agent Hybrid Control Architecture which executes
the Kohn-Nerode procedure for the on-line extraction of real-time controls. It is an automated
static verification technique based on the construction of an Intersection Unification Automaton
We discuss an essential step of this verification technique, namely, a procedure to verify that
the controller design generated by an agent in MAHCA meets the requirements established for
that agent. The paper describes the functionality of the procedure and illustrates it with an
example

14. SUBJECT TERMS

verification, hybrid system controllers, control automaton
15. NUMBER OF PAGES

6

16. PRICE CODE

17. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
ON THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)

Prescribed by ANSI Std. 239-18
298-102

* I

enter for
loundations of
Intelligent
lystems

r>o

i>o

625 Rhodes Hall, Ithaca, NY 14853 (607) 255-8005

Technical Report
97-11

Automaton Comparison Procedure
for the Verification of Hybrid

Systems

W. KOHN, J. B. REMMEL AND A. NERODE

November 1997

Automaton Comparison Procedure for the Verification of Hybrid
Systems

Wolf Kohn*and Jeffrey B. Remmelt
HyBrithms Corporation* 11201 SE 8th Street #J140

Bellevue, WA 98004-6420
e-mail: wk@hybrithms.com, jremmel@hybrithms.com

Anil Nerode5

Mathematical Sciences Institute, Cornell University
Ithaca, NY 14853

e-mail: anil@math.cornell.edu

Abstract
This paper describes on-going research on a proce-

dure for the verification of hybrid system controllers im-
plemented via HyBrithms' Mutiple Agent Hybrid Control
Architecture which executes the Kohn-Nerode procedure
for the on-line extraction of real-time controls. It is an
automated static verification technique based on the con-
struction of an Intersection Unification Automaton (IUA).
We discuss an essential step of this verification technique,
namely, a procedure to verify that the controller design
generated by an agent in MAHCA meets the requirements
established for that agent. The paper descibes the func-
tionality of the procedure and illustrates it with an exam-
ple.

1. Introduction
This paper describes on-going research on a proce-

dure for the verification of hybrid system controllers im-
plemented via HyBrithms' Multiple Agent Hybrid Control
Architecture [11] which executes the Kohn-Nerode pro-
cedure, [8, 10, 12, 13, 14, 15], for the on-line extraction
of real-time control. It is an automated static verifica-
tion technique based on the construction of an Intersec-
tion Unification Automaton (IUA). Given a hybrid system
controller generated by a MAHCA agent and a set of con-
trol specifications for its desired behavior, the proposed
verification procedure builds an IUA constructed by an
automata operation on two inference automata: the au-
tomaton encoding the specifications and the control au-

•Research supported by SDIO contract DAA H-04-93-C-0113,
Dept. of Commerce Agreement 70-NANB5H1164.

tResearch supported by SDIO contract DAA H-04-93-C-0113,
Dept. of Commerce Agreement 70-NANB5H1164. On leave from
the Department of Mathematics, University of California at San
Diego.

* HyBrithms Corporation was formerly known as Sagent Corpo-
ration

5 Research Supported by ARO under the MURI program "Inte-
grated Approach to Intelligent Systems," grant no. DAAH04-96-1-
0341.

tomaton constructed by the inferencer of the agent [11].
The ultimate goal of our research is to develop a verifi-
cation procedure to verify a MAHCA distributed imple-
mentation to a set of global requirement specifications. In
this paper we discuss an essential step, namely, a proce-
dure to verify that the controller design generated by an
agent in MAHCA meets the requirements established for
that agent. The paper descibes the functionality of the
procedure and illustrates it with an example.

2. The outline of the verification
procedure

The verification procedure that we propose is based on
the construction of a proof system in the domain in which
a hybrid controller generated by an agent's inferencer and
the specifications are represented by nondetermistic finite
state automata.

The proof system is very simple. It is based on the
comparison of the behavior of the two automata in the
domain: one representing the execution automaton of an
agent's inference automaton [11] (in the domain of the
proof system) and the other representing the specifica-
tions. In the remaining part of this section we shall give
an outline of our proof procedure.

Consider a control automaton with requirements. Let
A be the behavior associated with the agent and let B be
the behavior of the automaton representing the require-
ments. The proof system has to show that for any inputs
to A , the behavior R , defined by

Ä=(An„(B)c)(
(i)

is empty where n„ is a binary operation on the universe
of behaviors such that if Z = Xnu Y for behaviors X and
Y in the universe of behaviors U, then Z is the behavior
common to X and Y. In (1), ()c is a unary operation on
the universe of behaviors such that if Z = {X)c, then Z is
the logical complement of the behavior X . Intuitively, if
X is a behavior representing a set of requirements, (X)c

represents the set of behaviors which violate those require-
ments. Finally in (1), ()' is a unary operation on U such
that if Z = (X)\ then Z represent the smallest behavior
equivalent to X.

3. Verification automaton
A verification automaton is an object

A = (Q, X, I, T, Y, Z, *, 8, a, ß) where
1) Q is a set of states.
2) X is the domain set.
3) I is the set of initial states.
4) T is the set of terminal states.
5) Y is the input domain.
6) Z is the output domain.
7) $ = {<j>i\<j)i : X -*■ X) is the instruction set.
8) 8 : Q x $ -¥ Q is the state transition function.
9) a : Y -¥ X is the input function.
10) ß : Q x $ x X -» Z is the output function.

In addition, we make the following assumptions about
the verification automata.

I. We ignore the sensor and goal domains which are
the inputs to the control automaton A and the output
domain which is the set of control actions.

II. Each element q £ Q is a controller state. The
controller states corresponds to relations which the
system must satisfy after the excution of the control
action which is issued in the controller state, see [5].

III. The relation 8 encodes the transition between
relations to be satisfied. If q is the current controller state
which implements action fc € $ and x £ X is the current
state of the system, then 8{q,<f>i(x)) = qnext where qnext

is the label of the next relation to be satisfied.

IV. If q S Q is an element of /, we say that q is
an initial relation label.

V. If q e Q is an element of T, we say that q is a
success relation label.

VI. The output function ß satisfies the following:

ß(Q,4>M »«{* (*) if 9 er,
if otherwise (2)

Figure 1:

actions under chattering composition [5]

$*=U^0$
fc. (3)

Here $° = {A} with A being the identity function on X
so that A(x) = x for all x € X and $fc is the set of all
chatering compositions with exactly k steps

<M^-.---(<M<M)))---)-
This corresponds for example to a branch of the con-

troller whose state path in the automaton is pictured in
Figure 1.

The iterated state transition 8* is a relation 8* : Q x
$* -> Q , defined recursively as follows:

<**(<?, A) = q

8*(q,<f>) = <j> V<£e§

8m{q,<tKü) = 8*{8{q,(j>),uj) V^€$,o;e$*

or

8*(q,w4>) = 8{8*{q,uj),<t>) V<£e$,u;€§*

The state behavior of the automaton defines a func-
xl-»l each q £ Q by tion Aq : $

(u),x) = |
u(x)
JL

if <J*(g,w) 6T
if otherwise. (4)

That is, if q is the label of the control <fc(z) and q is
terminal, then the output function gives the value of the
control action. Otherwise the output function generates
the empty symbol J..

An iterated state transition represents a sequence of
two or more consecutive state transitions coresponding
to a control action satisfying the composite of the cor-
responding relations. Let $* be the monoid of all control

Thus any control action applied to an a; in the domain X
yields a result that is still in the domain.

The output behavior function is denoted by OAq and
maps the Y x $* where Y is the input set to the output
set Z by

OAq(y)=ß(Aq(uj,a(y)). (5)

Given an automaton A = (Q, X, I, T, Z, $, 8, a, ß), the
accessible automaton Aa associated with A is defined by
the following algorithm in which Qo. Qii • • • represent sets
of states, q' represents a new state, q represents a previ-
ous state, Qo = I, Qi+i = W € Q - Qifiq € Qi3(f> e
$(<5(g, <(>) = <?')}> an(i with the termination criterion that
if Qk = 0, then Qk+P = 0 for all p > 0.

This algorithm defines a sequence of pairwise disjoints
sets of states Qo, Qi,... such that each state set Qj+i rep-
resents all states q1 that can only be reached from previous
state q € Qi. Any states that cannot be reached from a
previous state are considered dead code. The algorithm
terminates when no new states are defined from previous
states.

Define the accessible state set Qa to be set of states
that can be reached from some initial state q G I and
define the accessable terminal state set (or the set of ter-
minal state accessible from I) Ta by i Ta = T n Qa.
We then define the accessible automaton Aa by A" =
(Qa,X,Ta,Ia,Y,Z,$,6a,a,ß) where Ia = Qa n I = I
and Sa is the restriction of 5 to Qa x $. Note that if
IQI = n, then since the sets Qi are pairwise disjoint we
have Qn = 0 . Thus we have an a priori bound on the
length of the procedure.

Given the automaton A, a coaccessible automaton can
be built in a similar manner. To do this, we need to
define the reversal automaton Ar. The idea is simple.
We want a state path of the reversal automaton to the
state path of A except that we want to traverse the state
path backwards. Thus if A = (Q, X, I, T, Y, Z, $, 5, a, ß),
then Ar = (Q,X,F,Tr,Y,Z,$,8r,a,ß) where F = T,
TT = J, and 8r{q, <f>) = q' if 6(q', <f>) = q Vq, q' € W € $
An automaton state q £ Q is said to be coaccessible if and
only if its q is is accessible in the reversal automaton. We
then define the coaccessible automaton Ac by

Ac = ((Ar)°)r.

That is, the coaccessible automaton Ac is obtained by re-
versing automaton A, computing the accessible automa-
ton of the reversal automaton , and then reversing the
resulting automaton. Finally, given an automaton A, the
trim automaton At associated with A is defined

* - (Aa\c - (Ac\a A1 = {Aa)c = (Ac)

That is, to compute the trim automaton A1, we compute
the accessible automaton Aa and compute for it the coac-
cessible automaton of Aa. The most important property
of a trim automaton is that every state path segment is
a path from an initial to a terminal state. Computing
the trim automaton gets rid of dead code automatically
(this includes code that is unnecessary, which doesn't con-
tribute to the output).

4. Intersection Unification Automaton
Given automata

M = (Qi,X,h,Ti,Y,Z,«i.iiai,ßi) and (6)

A2 = (Q2,X,l2,T2,Y,Z,$2,62,Ct2,ß2), (7)

the intersection unification automaton, denoted by AiPiÄ2
is defined as follows.

AinA2 = (QixQ2,X,Iixl2,TixT2lY,Z,*i,6iailßi)

where Vgi € Qi,Vg2 € Q2,V0i € $i,V02 G $2,

<>{{qi, Q2), <t>) - I ± if otherwise

where (*) stands for "%i,0i),(<52(g2,<fo) are defined and
(pi unifies with fa"-

The intersection of two automata is performed by tak-
ing the cross product of the states (Q), the initial states
(/), and the terminal states (T) (the cross product gener-
ates all possible pairs of states between the two automa-
tons) and keeping only the state transitions in the inter-
section automaton where the state transitions in the two
original automatons are defined and the two state transi-
tions unify. Two instructions unify if one can be used to
implement the other. For example, an if statement can be
implemented with a while-do loop.

In summary, the verification is performed by repre-
senting two different descriptions of a program, such as
the program code and its requirements, as automatons and
then intersecting the two automatons. In the intersection
process, all possible pairs of states in the two automatons i'
are examined and the state pairs that fail to unify are ;

discarded. All states that are not members of a unified
state pair are identified. Leftover states from the program
automaton represent code that exceeds the requirements.
Leftover states from the requirements automaton repre-
sent requirements that were not implemented.

5. The INVERT Prototype
The first phase of the tool, the translated-code verifi-

cation tool, has been prototyped for a subset of the XPL
language. For this phase of the tool, verification is denned
as showing that the translated software meets the require-
ments established by the source language software; that is,
showing that the two programs functionally perform the
same and their output data undergo the same transitions.
Since we wanted to concentrate on demonstrating the uni-
fication technique instead of language parsing techniques,
the prototype was developed for only one language instead
of two. Therefore, two different programs written in the
same language are used to simulate the translated code.

This section contains a functional description of the
prototype translated-code verification tool. It is described
in terms of its software components and their functional-
ity. The next section describes a sample execution of the
prototype tool. The prototype tool was developed on an
Sagent IRAD project by Dan Strauss, Robert St. John,
and Holly Gibbons using the verification theory provided
by Dr. Wolf Kohn.

Figure 3 illustrates the software components of IN-
VERT and how they interact. INVERT consists of a ;
Parser, Semantic Generator, Trimmer, and Unifier. The
Parser and Semantic Generator together are abstractly re-
ferred to as the Automaton Generator. The Trimmer and
Unifier together are abstractly referred to as the Automa-
ton Manipulator. In the prototype INVERT, the Unifier
is executed separately from the other components.

All components of the prototype INVERT were origi-
nally coded in the C Language Integrated Production Sys-
tem (CLIPS), an expert system tool developed by the Soft-
ware Technology Branch at NASA Johnson Space Center

Some Code
or

Requiem«»

Stored

Automate«

Annum Genua

Pine TIB

AmaunManlpolxn

Trim Automaton

True/False
(saine requirements)

If False,
produce list of

Figure 2: INVERT Software Components.

(JSC); however, some of the components have been con-
verted to the C language.

The Parser accepts an XPL program and produces
a parse tree based on the syntax (the grammar or struc-
ture) of the XPL language. As stated above, the INVERT
prototype is implemented for a subset of the XPL lan-
guage. The subset includes declarations, assignments, if-
then-else statements, loops, bit variables, arrays, logical
expressions, and arithmetic expressions. It does not in-
clude procedures, case statements, goto statements, and
input/output statements. Therefore, the programs ac-
cepted by the prototype tool are simple, procedural, non-
real-time XPL programs with no input or output state-
ments. The Parser was developed using lex and yacc,
the UNIX lexical analyzer and parser, respectively, and
is based on the Backus-Naur form (BNF) of the XPL lan-
guage.

The Semantic Generator takes the parse tree gener-
ated by the Parser and uses the operational semantic rules
of XPL to produce a locally finite automaton describing
all of the program's states for a given set of inputs. Phys-
ically, the automaton is a collection of data structures, or
objects, that describe the order of the program instruc-
tions executed and the data contents changed after each
instruction is executed. Specifically, a separate object de-
scribes each data item, each instruction, and each program
state. The automaton serves as input to the Trimmer and
the Unifier. The operational semantic rules of XPL, which
define the meaning of the XPL statements, were obtained
from the XPL language specification; test cases were used
to determine the semantics when the specification lacked
sufficient detail.

The Trimmer accepts the automaton and identifies in

it the unnecessary code. Note that eliminating unneces-
sary code does not change the functionality of the pro-
gram. The code must be trimmed to maximize the effi-
ciency of the verification - only necessary code should be
verified. The Trimmer in the prototype INVERT prompts
the user for a list of output variables for the program, then
traverses the program backwards and builds a list of vari-
ables that contribute to the output. Initially, only the out-
put variables are on the list. As the traversal continues,
the list grows to include all important intermediate vari-
ables. If a program statement does not alter any variables
on the list, then it is considered unnecessary and is flagged
as such in the automaton. The prototype Trimmer does
not yet flag dead code because dead code is identifiable
in the automaton generated by the Semantic Generator,
which marks each statement as it is executed.

The Unifier takes two automatons produced by sepa-
rate runs of the Automaton Generator and a list of desired
output variables for one of the programs and, by compar-
ing the states of the two automatons, tells whether they
unify. Unification is defined as the output data undergo-
ing the same transitions in both automatons. The Unifier
uses variable substitution to map corresponding variables
in the two automatons, so the two programs can use dif-
ferent names for the same variables. The Unifier then
generates a Cartesian product of the output states from
the first automaton with the output states from the sec-
ond automaton, and examines every pair of output states
to locate the pairs that unify (output states correspond
to statements that modify output variables). Two output
states unify if their variables substitute, they are assigned
the same value, and the variables they reference have the
same value. Two automatons unify if and only if all out-
put states unify. The Unifier produces a Boolean result
specifying whether or not the two automatons unify, and,
if they do not unify, a list of the states and variables that
do not unify. If the two automatons unify, they are con-
sidered verified.

For example, suppose Automatonl and Automaton
2 have states representing declarations and executable
statements. The states representing declarations in Au-
tomatonl do not unify with states representing executable
statements in Automaton2 so those pairs of states are dis-
carded. Pairs of states that represent similar variable dec-
larations or similar executable statements in the two au-
tomatons may unify.

6. Example
Figure 4 illustrates the INVERT verification process

performed by the prototype tool. INVERT generates a
trimmed automaton for both the first program, labeled
Sourcel, and the second program, labeled Source2. Un-
necessary code identified by the Trimmer is based on the
list of desired outputs provided for each program. The two
automatons are then subjected to the INVERT unification

Social
Code

List of
desired
outputs

Invert
Trim

» Ami

Trim
Ait. 2

Invert
^ Souree2

Code

list of
Mdesired

t t
Invert

(unifier)

o
■>

True/False

saraeitquireKnis
If False, list
offending code

Listof
desired
outputs

->

Figure 3: INVERT Verification Process.

process. Since the Unifier is still executed separately from
the other components in the prototype INVERT, the list
of desired outputs must again be specified. The Unifier
reports a Boolean result as to whether or not the two pro-
grams unify, and, if they do not unify, the Unifier also re-
ports the states and variables in each program that failed
to unify.

Ultimately the translated-code version of INVERT
will verify software translated from one language to an-
other. However, as stated in Section 4, the prototype
tool only accepts simple, procedural, non-real-time XPL
programs with no input or output statements. Therefore
the verification capability of the prototype INVERT was
demonstrated by providing as input two different XPL
programs that implement the same basic design using
slightly different language constructs. Figure 5 lists a pro-
cedure named Bubblel and a procedure named Bubble2.

Both procedures sort an array of 10 numbers in as-
cending order using a bubble sort algorithm. However,
Bubblel uses nested counted loops while Bubble2 uses
nested while loops. In addition, Bubble2 has several lines
of unnecessary and dead code, as indicated by the com-
ments in the program.

INVERT is executed for both Bubblel and Bubble2 to
generate trimmed automatons for each. The desired out-
put for procedure Bubblel is the array A, and the desired
output for procedure Bubble2 is array Arr. The Bubble2
automaton has the unnecessary and dead code flagged.

BUBBLE 1 BUBBLE 2

• BUBBLE SORT ALGORITHM • • BUBBLE SORT ALGORITHM •

• USING COUNTED LOOPS • • WITH WHILE LOOPS *

* TO SORT 10 NUMBERS • • AND UNNECESSARY CODE 8

*DC = Dead Code * • UC = UnneceeMary Code *

1 DECLARE A(9) BIT(S) 1 DECLARE ARR(9) BIT(8)

INITIAL(3,6,T,1,9,0.4,2,5,8) INITIAL(3,e,T,l,9,0,4,2,5,8)

2 DECLARE(TEMP, I, J) BIT(8) 2 DECLARE(T, T2, I, J) BIT(8)

3 DO I = 0 TO 8; 3 DECLARE LENGTH BIT(8)

INITIAL(9)

4 DO J = 1+1 TO 9 4 J = 0; *UC •

5 IF A(J) < A(J) 5 T2 = 0; • UC 8

6 THEN DO; 8 J = J+ 10; • UC *

7 TEMP = A(J); 7 J = J - 10; • UC *

8 A(J) = A(I)i 8 DO WHILE J <= LENGTH - 1;

9 A(I) = TEMP; 9 I = J + 1;

10 END; 10 DO WHILE I <= LENGTH;

11 END; 11 IF ARR(I) < ARR(J)

12 END; 12 THEN DO;

13 IF A(9) < A(0) 13 T = ARR(I);

14 THEN TEMP = 0; • DC • ARR(I) = ARR(J);

IS EOF 15 ARR(J) = T;

16 T2 =T; • UC •

17 END;

18 1 = 1 + 1;

19 T2 = I; • UC *

20 I = ARR(0)+ARR(9);' UC •

21 I = T2; • UC •

22 END;

23 J = J + 1;

24 END;

25 IF ARR(9) < ARR(0)

28 THEN T = 0; * DC •

27 EOF

Figure 4

After the trimmed automatons are generated for the
two programs, the Unifier is executed. The two trimmed
automatons, Bubblel and Bubble2, and the list of desired
outputs for Bubblel (the array A) are provided as input.
The Unifier performs variable substitution and determines
that variable A in Bubblel and variable Arr in Bubble2
substitute because they are the same type, their values are
the same in the first state and the last state, and they do
not substitute with any other variables. The Unifier then
performs unification on all the program states. It deter-
mines that the two programs unify because all of their
states unify. Two states unify if the variables assigned in
that state substitute with each other and are assigned the
same value, and variables referenced in that state have the
same value.

The two programs, Bubblel and Bubble2, are consid-
ered verified as performing the same functionally.

7. Future Work
Currently, the prototype tool can only statically verify

software that uses the same language, same basic design,
similar variables, and same set of inputs for desired out-
puts. Future work on the translated-code verification tool
includes expanding the prototype to handle two full lan-
guages and adding the following capabilities: verify soft-
ware with variable inputs as opposed to fixed inputs, verify
different algorithms that perform the same function, and
verify real-time code and hierarchical code. In addition,
cosmetic enhancements such as an easy-to-use graphical
user interface are needed to make the verification tool user
friendly. A method of representing requirements and spec-
ifications in an automaton must be developed before the
translated-code verification tool can be expanded into a
code-to-requirements verification tool.

References
[1] Antsaklis, P., Kohn, W., Nerode, A, and Sastry, S.

eds., Hybrid Systems II, Lecture Notes in Computer
Science vol. 999, Springer-Verlag, (1995).

[2] Bowler, 0., Grotzky, J., Nielson, M., Nilson.S., and
Van Buren, J., "Requirements Analysis and Design
Tools Report," Software Technology Support Center,
HÜ1 AFB, UT, April 1992.

[3] Boyer, R. S. and Moore, J.S., A Computational Logic
Handbook, Academic Press, Corp.., San Diego, CA,
1988.

[4] Butler, Ricky W. "NASA Langley's Research Pro-
gram in Formal Methods," Presented at the 6th An-
nual Conference on Computer Assurance (COMPASS
'91), Gaithersburg, MD., June 24-28, 1991.

[5] Ge, X., Kohn, W., Nerode, A. and Remmel, J.B.,
"Feedback Derivations: Near Optimal Controls for
Hybrid Systems", to appear in Hybrid Systems III,
Springer Lecture Notes in Computer Science.

[6] Grossman, R.L., Nerode, A., Ravn, A. and Rischel,
H. eds., Hybrid Systems, Lecture Notes in Computer
Science 736, Springer-Verlag, (1993).

[7] Kohn, W. "A Formal Verification System For Func-
tional Software Modules," Boeing Electronics report
BE - 499- 08-86. August 1986.

[8] Kohn, W. and Nerode, A., "Foundations of Hybrid
Systems" in Hybrid Systems, [6]

[9] Kohn W., and Nerode, A., "Multiple-Agent Hybrid
Systems," Proc. IEEE CDC 1992, vol 4, pp 2956,
2972.

[10] Kohn W„ and Nerode A. "Models For Hybrid Sys-
tems: Automata, Topologies, Controllability, Ob-
servability" in Hybrid Systems, [6], 317-356.

[11] Kohn W. and Nerode, A., "Multiple Agent Hybrid
Control Architecture" In Logical Methods (J. Cross-
ley, J. B. Remmel, R. Shore, M. Sweedler, eds.),
Birkhauser, (1993) 593-623.

[12] Kohn, W., Nerode, A. and Remmel, J.B., " Hybrid
Systems as Finsler Manifolds: Finite State Control
as Approximation to Connections", In [1], (1995)

[13] Kohn, W., Nerode, A. and Remmel, J.B., "Contin-
ualization: A Hybrid Systems Control Technique for
Computing", Proceedings of CESA'96 IMACS Mul-
ticonference vol. 2, 5077-511.

[14] Kohn, W., Nerode, A. and Remmel, J.B., "Feedback
Derivations: Near Optimal Controls for Hybrid Sys-
tems", Proceedings of CESA'96 IMACS Multiconfer-
ence vol. 2, 517-521.

[15] Kohn, W., Nerode, A. and Remmel, J.B., "Scalable
Data and Sensor Fusion via Multiple-Agent Hybrid
Systems", submitted to IEEE Transactions of Auto-
matic Control.

[16] Mills, H., "The Cleanroom Software Development
Process," Crosstalk, No. 39, Software Technology
Support Center, Hill AFB, UT, Dec. 1992.

[17] Price, G.,Daich, G.T., Murdock.D., and Hidden.E.,
"Test Preparation, Execution, and Analysis Tools
Report," Software Technology Support Center, Hill
AFB, UT, April 1992.

[18] Price, G., Ragland, B., Murdock, D., and Hidden,E.,
Source "Code Static Analysis Tools Report," Soft-
ware Technology Support Center, Hill AFB, UT,
April 1992.

[19] Rushby, J., "Quality Measures and Assurance for AI
Software," Contractor Report 4187, NASA Langley
Research Center, Hampton, VA., 1988.

[20] Rushby, J., von Henke,F., and Owre, S., "An Intro-
duction to Formal Specification and Verification Us-
ing EHDM," Technical Report CSL-91-2, Computer
Science Laboratory of SRI International, Menlo Park,
CA, Feb. 1991.

[21] Wallace, D. R. and Fujii, R.U., "Software Verification
and Validation: An Overview," IEEE Software, vol.
6 no. 3, pp. 10-17, May 1989.

